Effect of preorganization on the affinity of synthetic DNA binding motifs for nucleotide ligands.

نویسندگان

  • S Vollmer
  • C Richert
چکیده

Triplexes with a gap in the purine strand have been shown to bind adenosine or guanosine derivatives through a combination of Watson-Crick and Hoogsteen base pairing. Rigidifying the binding site should be advantageous for affinity. Here we report that clamps delimiting the binding site have a modest effect on affinity, while bridging the gap of the purine strand can strongly increase affinity for ATP, cAMP, and FAD. The lowest dissociation constants were measured for two-strand triple helical motifs with a propylene bridge or an abasic nucleoside analog, with Kd values as low as 30 nM for cAMP in the latter case. Taken together, our data suggest that improving preorganization through covalent bridges increases the affinity for nucleotide ligands. But, a bulky bridge may also block one of two alternative binding modes for the adenine base. The results may help to design new receptors, switches, or storage motifs for purine-containing ligands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic study on the interaction of three water-soluble porphyrins with calf thymus DNA

Porophyrins and their metal derivatives are strong DNA binders with association constant of  to  . Some of these compounds have been used for the radiations sensitization therapy of cancer and are targeted to interact with cellular DNA. Binding of porphyrins to DNA changes the expectral and other physic chemical characteristic of porphyrins, The mode of binding can be extracted from inspection ...

متن کامل

Optimum Conditions of Radioligand Receptor Binding Assay of Ligands of Benzodiazepine Receptors

To obtain drugs which are more selective at benzodiazepine (BZD) receptors, design and synthesis of functionally selective ligands for BZD receptors is the current strategy of our pharmaceutical chemistry department. The affinity of newly synthesized ligands is assessed by radioligand receptor binding assays. Based on our previous studies, 2-phenyl-5-oxo-7-methyl-1,3,4-oxadiazolo[a,2,3]-pyrimid...

متن کامل

Optimum Conditions of Radioligand Receptor Binding Assay of Ligands of Benzodiazepine Receptors

To obtain drugs which are more selective at benzodiazepine (BZD) receptors, design and synthesis of functionally selective ligands for BZD receptors is the current strategy of our pharmaceutical chemistry department. The affinity of newly synthesized ligands is assessed by radioligand receptor binding assays. Based on our previous studies, 2-phenyl-5-oxo-7-methyl-1,3,4-oxadiazolo[a,2,3]-pyrimid...

متن کامل

Development of aptameric affinity ligands specific to human plasma coagulation factor VIII using SEC-SELEX

Protein specific aptamers are highly applicable affinity ligands in different fields of research and clinical applications. They have been developed against various targets, in particular, bio-macromolecules such as proteins. Among human proteins, the coagulation factors are the most attractive targets for aptamer selection and their specific aptamers had valuable characteristics in therapeutic...

متن کامل

Development of aptameric affinity ligands specific to human plasma coagulation factor VIII using SEC-SELEX

Protein specific aptamers are highly applicable affinity ligands in different fields of research and clinical applications. They have been developed against various targets, in particular, bio-macromolecules such as proteins. Among human proteins, the coagulation factors are the most attractive targets for aptamer selection and their specific aptamers had valuable characteristics in therapeutic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 13 20  شماره 

صفحات  -

تاریخ انتشار 2015